Miscibility Gaps in Fused Salts

Note II. Systems of TlBr with two Alkali Nitrates and of two Thallous Halides with NaNO₃ *
PAOLO FRANZOSINI, CESARE SINISTRI, MARIO ROLLA, and ALBERTO TIMIDEI

Institute of Physical Chemistry, University of Pavia, Italy

(Z. Naturforschg. 21 a, 595-600 [1966]; received 26 January 1966)

The miscibility gaps in the liquid state have been measured in sixteen systems of the type $TlBr+(MeI,MeII)NO_3$, where MeI, MeII are alkali metals, and in eight systems of the type Tl(Cl,Br) or $Tl(Cl,J)+NaNO_3$. For the systems of the first type, deviations from additivity of the demixing t_{max} have been put in connection with proper functions of ionic radii.

Moreover deductions have been drawn about miscibility gaps which were not directly measurable, owing either to the thermal instability of one component, or because the gaps were "submerged" under the corresponding SL curves.

In Note I ¹ TIX + MeNO₃ binary systems (where X = Cl, Br, J, and Me = alkali metal), which are diagonal sections of the reciprocal systems Tl, Me/X, NO₃, have been studied. The systems containing TlBr show a mutual limited solubility in the liquid state, except for TlBr + CsNO₃, where, however, a branch of the SL (solid-liquid) curve is "S"-shaped, with an almost isothermal portion, thus showing a sharp tendency to split in the liquid phase.

Moreover it has not been possible to measure the temperature $t_{\rm max}$ (corresponding to the maximum of the demixing curve) in the TlBr + LiNO₃ system, owing to the thermal instability of the nitrate.

We have now studied demixing in mixtures of TlBr with pairs of alkali nitrates, in order to obtain on one hand more detailed data on the two above mentioned gaps, and on the other hand information on the interactions between the nitrates of each couple, inferred from the deviations of $t_{\rm max}$ from additivity.

To complete the picture, some mixtures of couples of thallous halides with NaNO₃ have also been studied.

Results and Discussion

a) Mixtures of TlBr with couples of alkali nitrates

The miscibility gaps in the systems of TlBr with: Li, Na(1:1,1:3); Li, K(1:1,1:3); Na, K(3:1,1:1,1:3), Na, Rb(3:1,1:1,1:3); Na, Cs(3:1,1:1,1:3); K, Rb(1:1); K, Cs(1:1); and Rb, Cs(1:1) nitrates have been measured.

* Work carried out with the aid of the Consiglio Nazionale delle Ricerche (Rome).

The results are shown in Fig. 1-3, where circles are experimental data. In Table 1 are tabulated the temperatures t $^{\circ}$ C at which, by cooling and shaking, demixing takes place, the compositions (as molecular fractions x_{TIBr}) and the t_{max} values.

From Fig. 1-3 it can be seen that, in each system, the extent of the gap is increasing as the percentage of the nitrate with the smaller cation increases, in conformity with the tendencies to demix pointed out in Note I 1 . The primary crystallization from one of the two liquid phases in equilibrium

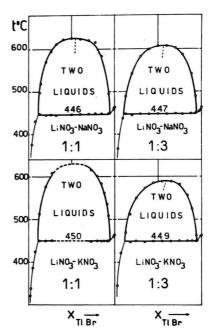


Fig. 1. Systems: TlBr+(Li, Na) NO₃ and TlBr+(Li, K) NO₃.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

¹ C. Sinistri, P. Franzosini, A. Timidei, and M. Rolla, Z. Naturforschg. 20 a, 561 [1965].

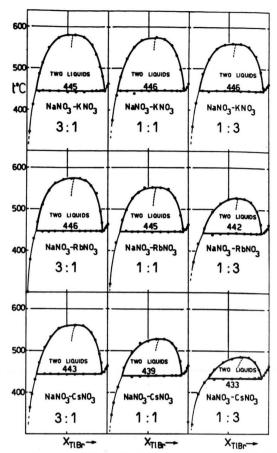


Fig. 2. Systems: TlBr+ (Na, K) NO₃; TlBr+ (Na, Rb) NO₃; and TlBr+ (Na, Cs) NO₃.

Fig. 3. Systems: $TlBr + (K, Rb) NO_3$; $TlBr + (K, Cs) NO_3$; and $TlBr + (Rb, Cs) NO_3$.

generally takes place at temperatures constant within the experimental fluctuations, except for mixtures containing (Na, Cs) NO₃ (1:3) where, however, the temperature variations with TlBr molecular fraction

are not great. The average values of the primary crystallization temperatures are always reported in the figures.

In the TlBr + (Li, K) NO₃ (1:1) system the liquid-liquid (LL) curve could not be completely traced owing to the thermal instability of the melt, and so the temperature $t_{\rm max} = 630$ °C could be evaluated only approximatively.

Availing ourselves of the data of Table 1 and Note I, it has been possible to describe the miscibility gaps in the systems $TlBr + NaNO_3 + (Li, K, Rb, Cs) NO_3$: a few LL isotherms are shown in Fig. 4.

Let us now consider the TlBr + (K, Rb) NO₃, (Na, K) NO₃ and (Na, Rb) NO₃ mixtures. Curves $t_{\rm max} \ vs$ (concentration ratio of the two nitrates) indicate deviation from additivity for the quantities $\Delta t \equiv t_{\rm calc} - t_{\rm obs}$, which are negative and which we think we may ascribe simply to the nonideality of the two nitrate mixtures. The parallelism between these $\Delta t < 0$ and the negative enthalpies of mixing in the corresponding binary nitrate mixtures is quite clear ² (Fig. 5).

In order to extend similar remarks to the systems containing CsNO $_3$, it must be observed that the SL curve of the TlBr + CsNO $_3$ system shows an "S"-shaped branch with a large portion (for $0.40 < x_{\rm TlBr} < 0.85$) practically isothermal at $429\,^{\circ}$ C. The flatness and extent of this portion suggest the occurrence of a metastable "submerged" miscibility gap ³, the $t_{\rm max}$ of which must lie so close to $429\,^{\circ}$ C, that, as a first approximation, this very temperature may be assumed as $t_{\rm max}$. An evaluation, which is perhaps more careful, can be done by considering for the TlBr + (Rb, Cs)NO $_3$ mixtures Δt as negligible, which is justified by the fact that for the two nitrates the enthalpy of mixing is $\approx 0\,^2$. A value $t_{\rm max} = 426\,^{\circ}$ C is drawn, which is used in the following calculations.

 Δt values shown in Table 2 refer to the mixtures with a 1:1 ratio of the molecular fractions of the two nitrates, and are believed to be correct within ± 1 °C.

Previous authors ⁴ have related, in a semiempirical way, a number of properties of mixing with parameters (as Tobolsky's or Reiss, Katz, and

² O. J. Kleppa and L. S. Hersh, J. Chem. Phys. 34, 351 [1961].

³ J. E. Ricci, The Phase Rule, Van Nostrand Co., New York 1951, p. 175.

⁴ See, e. g.; a) ref. ²; b) H. Reiss, J. L. Katz, and O. J. Kleppa, J. Chem. Phys. **36**, 144 [1962]; c) B. DeNooijer and J. A. A. Ketelaar, Rec. Trav. Chim. Pays-Bas **83**, 573 [1964]; d) G. Bertozzi and G. Sternheim, J. Phys. Chem. **68**, 2908 [1964].

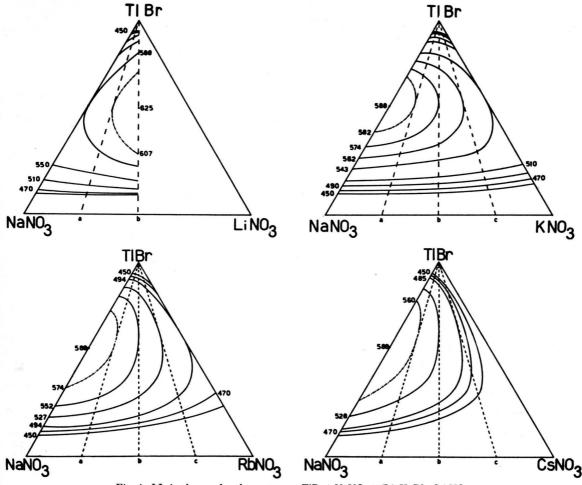
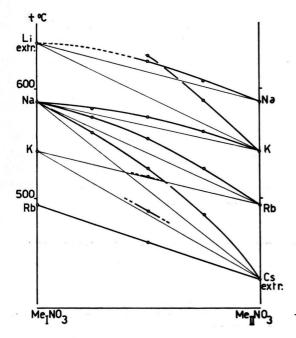



Fig. 4. LL isotherms for the systems: $TlBr + NaNO_3 + (Li, K, Rb, Cs) NO_3$.

KLEPPA's), which are functions of the interionic distances of the pure salts. As a matter of fact, when, for 1:1 nitrate ratio mixtures, quantities $-R \Delta t$ are plotted vs the RKK's parameter 4b :

$$\delta^2 = [\,(d_1-d_2)\big/(d_1\,d_2)\,]^2$$

 $(d_1 \text{ being the sum of the ionic radii of the first nitrate, and } d_2 \text{ the same quantity for the second}$

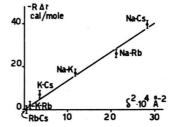


Fig. 6. Values of $-R \, \varDelta t$ as a function of the Reiss, Katz, and Kleppa parameter.

← Fig. 5. t_{max} vs Me_INO₃/Me_{II}NO₃ for the systems: TlBr+two alkali nitrates.

$\begin{array}{l} {\rm System} \\ {\rm TlBr} \ + \end{array}$		
(Li, Na)NO ₃	0.125	497
1:1	.138	518
$t_{ m max}=625$.200	570
	.259	594
	.320	611
	.403	622
	.500	625
	.600	623
	.700	620
	.775 .850	$616 \\ 582{5}$
	.926	382.5 494.5
	.920	494.5
(Li, Na)NO ₃	0.125	488
1:3	.200	542
$t_{ m max}=607$.300	582
	.400	599
	.500	606
	.600	607
	.700 .780	602 587
	.875	541.5
	.925	489
(Li, K)NO ₃	0.125	513
1:1	.200	576
$t_{\rm max} \sim 630$.274	609
	.725	616.5
	.800	602
	.850	584
	.880	562
	.910	536
	.932	507.5
(Li, K)NO ₃	0.125	469
1:3	.180	512
$t_{ m max}=589$.250	550
	.350	574
	.450	586
	.550	589
	.650 .750	589 583
	.840	557

$\begin{array}{c} {\rm System} \\ {\rm TlBr} + \end{array}$	$x_{ m T1Br}$	t(°C)
	.892 .940	525 463
27 77:370		
$(Na, K)NO_3$	0.150	487
3:1	.196	513
$t_{\mathrm{max}} = 581.5$	$.273 \\ .390$	550
	.500	575 581
	.600	580.5
	.700	575.5
	.800	558
	.850	534
	.899	504
	.925	481
(Na, K)NO ₃	0.150	479
1:1	.230	523.5
$t_{ m max}=574$.321	552
·max orz	.410	567.5
	.600	574
	.700	571
	.790	556
	.850	532
	.899	498
	.940	452.5
(Na, K)NO ₃	0.175	486
1:3	.250	523
$t_{ m max}=561$.350	548
	.450	558
	.550	561
	.649	561
	.749	$554{5}$
	.839	531
	.899	492
	.932	456
(Na, Rb)NO ₃	0.135	468
3:1	.200	510
$t_{ m max}=574$.275	544
	.350	561.5
	.450	571
	.550	573

$\begin{array}{c} {\rm System} \\ {\rm TlBr} + \end{array}$	$x_{ m T1Br}$	t (°C)
	.650	572.5
	.720	569
	.790	556
	.860	528
	.905	493.5
	.925	466
(Na, Rb)NO ₃	0.175	473
1:1	.225	498
$t_{ m max}=554$.300	526
	.375	540
	.450	551
	.550	552
	.650	553.5
	.750	548
	.830	527
	.900	484
	.930	453
(Na, Rb)NO ₃	0.200	453
1:3	.300	493
$t_{ m max}=527$.403	513
	.500	524
	.600	527
	.700	525
	.780 .849	517. ₅
	.900	465
	.900	400
(Na,Cs)NO ₃	0.160	470.5
3:1	.225	507
$t_{ m max}=560$.300	533
	.400 .500	552 559
	.600	560
	.703	559
	.800	543
	.850	525
	.900	492
	.925	470
	.923	7.0
(Na,Cs)NO ₃	0.200	459

$\begin{array}{c} {\bf System} \\ {\bf TlBr} + \end{array}$	$x_{ m TlBr}$	t (°C)
$t_{ m max}=527$.400	517
-max	.500	522
	.600	526.5
	.700	527
	.800	517
	.850	505
	.900	474
(Na, Cs) NO ₃	0.275	441
1:3	.325	454
$t_{ m max}=485$.440	472
1max — 400	.546	480
	.650	485
	.750	484
	.825	473
	.875	455
	.010	400
$(K, Rb)NO_3$	0.200	457
1:1	.280	487.5
$t_{ m max}=519.5$.350	504
	.450	517
	.550	519.5
	.650	519
	.750	514
	.826	495
	.890	464
(K,Cs)NO ₃	0.300	460.5
1:1	.400	477
$t_{ m max}=488$.500	485
mux	.601	488
	.700	488
	.800	481
	.890	446
(Rb, Cs)NO ₃	0.360	442
1:1	.450	457
$t_{\rm max} = 460$.549	459
max — 400	.650	460
	.750	458
	.825	444

Table 1.

Systems TlBr	+	$-\Delta t$ (°C)
(Na, K)NO ₃	1:1	8.5
(Na, Rb)NO ₃	1:1	13
(Na, Cs)NO ₃	1:1	20
$(K, Rb)NO_3$	1:1	1
$(K, Cs)NO_3$	1:1	3.5
$(Rb, Cs)NO_3$	1:1	0
		(estimated)

Table 2.

nitrate), a satisfactorily linear dependence is found (Fig. 6) ⁵.

The correctness of the above considerations is proved by the agreement which is obtained in pre-

dicting the $t_{\rm max}$ for the TlBr + LiNO₃ system by using the data concerning either the TlBr + NaNO₃ and TlBr + (Li, Na) NO₃ (1:1), or the TlBr + KNO₃ and TlBr + (Li, K) NO₃ (1:1) mixtures. From Fig. 6 are obtained

$$\Delta t = -11$$
 °C

for the TlBr + (Li, Na) NO3 (1:1) system, and $\varDelta t = -37~^{\circ}\mathrm{C}$

⁵ As regards cationic radii and the radius of ion NO₃-, we have referred respectively to Note I ¹ and to the paper by Kleppa and Hersh ².

for the TlBr + (Li, K)NO₃ (1:1) system. It follows that for the TlBr + LiNO₃ system $t_{\rm max}$ is evaluated as 640 °C in the first case, and as 643 °C in the second: the mean value is reported in Fig. 5.

b) Mixtures of two thallous halides with NaNO3

The experimental data regarding LL equilibria in the title systems are summarized in Table 3. In Fig. 7 SL and LL curves for a number of systems $Tl(Cl, Br) + NaNO_3$ are reported. The $TlCl + NaNO_3$ system ¹ does not present any LL equilibria, but an SL curve with an "S"-shaped branch. Progressively

$\begin{array}{c} {\rm System} \\ {\rm NaNO_3} + \end{array}$	x_{TlX}	t (°C)	$rac{ ext{System}}{ ext{NaNO}_3 +}$	$x_{ m TlX}$	t (°C
Tl(Cl, Br)	0.340	398	Tl(Cl,J)	0.065	492
5.25:1	.390	405	3:1	.100	552
$t_{ m max}=410$.425	404.5	$t_{ m max}=612$.200	602
	.475	412		.300	611.
	.535	405.5		.400	601
	.585	399		.475	586
	.650	396		.550	562
	.700	388.5		.650	531
				.750	501
Tl(Cl, Br)	0.230	407		.850	449
3:1	.300	422		.900	406.
$t_{\rm max}=431$.380	430			
max 101	.450	431	Tl(Cl, J)	0.060	467
	.500	427	5.25:1	.089	505
	.550	424	$t_{ m max} = 547$.147	535.
	.625	422	illax 021	.250	546
	.722	412		.350	545
	.800	396.5		.450	525
		000.5		.550	495
Tl(Cl, Br)	0.175	443		.650	466
1:1	.230	465		.750	441
$t_{\text{max}} = 497$.310	488		.824	413
$t_{\text{max}} = 491$.400	496			
	.450	497	Tl(Cl, J)	0.100	439
	.550	491	9:1	.115	452.
	.650	485	$t_{\rm max} = 492$.150	468.
	.750	472	max — 402	.225	492
	.825	449		.300	490
	.850	439		.400	477
	.000	100		.520	448
				.600	428.
TIL (CL D-)	0.140	464		.690	412
$\begin{array}{c} \operatorname{Tl}\left(\operatorname{Cl},\operatorname{Br}\right) \\ 1:3 \end{array}$.227	507		.750	400
					100
$t_{ m max}=546$.300	531	TIL(CL T)	0.100	386
	.370	543	Tl(Cl, J)	$0.100 \\ .150$	405
	.450	546	19:1		
.52: .600 .700 .800 .87:	.525	543 542	$t_{ m max}=424$.200	418. 421
		534		.400	421
					401
		514. ₅ 478		.475 .550	390.
		478		.650	379
	.910	491		.725	378
				17.0	

Table 3.

increasing TlBr quantities produce the "emersion" of a miscibility gap, the extent of which gradually increases and becomes the largest in the TlBr $+\,\mathrm{NaNO_3}$ system $^1.$ In the latter the demixing curve shows no inflection and the primary crystallization from one of the two liquid phases takes place at a constant temperature. On the contrary, in the systems containing both Tl-halides the LL curves show an inflection at $0.50 < x_{\mathrm{TIX}} < 0.60$ and the temperatures of primary crystallization in each system are increasing as x_{NaNO3} increases: these temperatures, however, cannot be measured with a great accuracy, and so in Fig. 7 the curves limiting the inferior parts of the gaps are dashed.

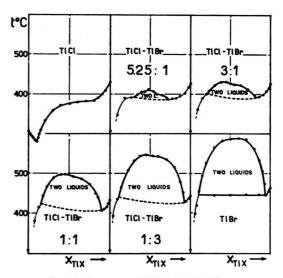


Fig. 7. Systems: $Tl(Cl, Br) + NaNO_3$.

In the $TI(Cl, J) + NaNO_3$ systems (see Fig. 8) the miscibility gaps, at the same concentrations of the second halide, are much larger than in the $TI(Cl, Br) + NaNO_3$ systems. Besides, we have to point out that in the systems containing TI(Cl, J) the SL curves may also present a minimum on the TIX richer side.

In a plot of the quantities $T^3_{\rm max}$ for the systems which contain Tl(Cl, Br) vs $x'_{\rm TlCl}$ (molecular fraction of TlCl in the mixtures of the two Tl-halides), by extrapolating to $x'_{\rm TlCl} = 1$, a value $t_{\rm max} = 357\,^{\circ}{\rm C}$ can be calculated for the "submerged" gap in the TlCl + NaNO₃ mixture. In a similar way, for the systems containing Tl(Cl, J), a value of $t_{\rm max}$ can be calculated, which is in good agreement with the previous one (see Fig. 9).

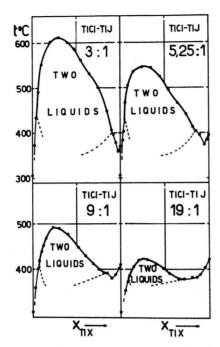


Fig. 8. Systems: Tl(Cl, J) + NaNO₃.

For the same system $TlCl + NaNO_3$ it is reasonable to suppose that the "submerged" gap has its

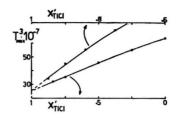


Fig. 9. T^3_{\max} as a function of x'_{TICI} for the systems: $\text{TI}(\text{Cl}, \text{Br}) + \text{NaNO}_3$ (lower scale), and $\text{TI}(\text{Cl}, \text{J}) + \text{NaNO}_3$ (upper scale).

maximum at $x_{\rm TICI}=0.6\pm0.1$, that is within an interval where the SL equilibrium temperatures vary from 376° to 382°C. Therefore, the miscibility gap in this system appears to be more deeply "submerged" than for TlBr+CsNO₃. This is in conformity with the fact that, in the latter system, the "S"-shaped branch of the SL curve shows an isothermal portion, while this does not appear for TlCl+NaNO₃.

Acknowledgment

The authors wish to thank Dr. Giorgio Flor for having carried out the measurements on the $Tl(Cl,J) + NaNO_3$ systems.